
Reverse Engineering
doɥsʞɹoM qnlƆ ʎʇᴉɹnɔǝsɹǝqʎƆ ssɐW∩ ∀

Census

https://forms.gle/ffWgsHyfCyPn5tiw6

What is Reversing Engineering?

● Understanding how a…
○ device
○ process
○ system
○ …or software
○ accomplishes a task with

reduced insight
● We figure out how it works by

opening it up and dissecting it

Why Would I Want to Reverse Engineer Something?

● We can use Reverse Engineering to ethically find out the
following:
○ Password checks on an executable
○ How does your favorite videogame implement all of its

features (and how can you mod it)
● On the corporate side:

○ Did another company illegally use our patented code?!

How Do I Reverse Engineer a Software?

1. Get the binary file
2. Disassemble it
3. Analyze it

Huh?

How is Software Made?

1. Write code (inside text editor/IDE)
2. Build it with .:*~*:.Complicated stuffs.:*~*:.
3. Get an executable
4. Debug/Test
5. Release

Compilation

Reverse Engineering Strategies

● Static analysis
○ Examining assembly code
○ Use disassembler/decompiler on binary

● Dynamic analysis
○ Introspecting at run-time
○ Attach debugger when running
○ Read memory of an in-execution process

How To Make Software: Compiler view

● Translate source code to machine instructions
○ Runs directly with your operating system or on hardware

■ Intel, AMD: x86-64
■ Qualcomm, Apple: ARM

● Write instructions into binary file

Demo: godbolt.org

https://godbolt.org/

Turn and talk to the people around you…

● Think of a simple program (any language) that
does arithmetic (addition, subtraction,
multiplication, etc…) operations

● Explain how you would write code that achieves
this to the people at your table

How to Reverse Software: Decompiler View

Binary File (Machine Code) Assembly Code Decompiled “Source”

What is a binary file?

● Binary file is a sequence of 0s and 1s encoded in a file containing
executable “machine code”

○ This type of file is called an ELF file
○ Similar to EXE files on Windows

Instruction Set Architecture
● Defines a set of instructions and their machine code encoding to

work with specific hardware design
● CISC: x86, RISC: ARM

How to Reverse Software: Decompiler View

Binary File (Machine Code) Assembly Code Decompiled “Source”

What is assembly?

● The lowest level human
readable form of machine
instructions

● What does it do?
○ Arithmetic operations:

■ +, -, *, /
○ Memory operations:

■ mov data around
○ Control program flow: Jump

■ Jmp to a different location
■ If-else, for while loops

sum:

 mov rdx, rdi

 mov rax, rsi

 add rax, rdx

 ret

square:

 mov edx, edi

 mov eax, esi

 imul eax, edx

 ret

Sidenote: AT&T vs. Intel Syntax

movl $1, %ecx

movl 3(%eax), %ebx

mov ecx, 1

mov ebx, [eax + 3]

AT&T

inst source, destination

Intel

inst destination, source

CS230 uses AT&T, we use Intel

Assembly (x86-64) - Registers

● Registers store values, they are
stored physically closest to the
CPU so they are fast to work with

● They are required for most
assembly instructions

● In x86, there are 6 commonly
used registers, 3 special registers
and other less commonly used
ones eg: r8-r15

Assembly (x86-64) - Register sizes

Assembly (x86) - Basic Instructions

● Perform operations that we do on registers, values, and memory addresses
● There are thousands of instructions; no need to memorize all of them

○ Intel x86 documentation is >5000 pages long.

Instruction
Name

p1 p2 Description

add/sub/imul register register
OR
value

Adds/subtracts/multiplies the two values stored in
registers together and stores the solution into the first
register

mov register register
OR
value

Moves the value stored in right register into the left
register

Assembly (x86) - Basic Instructions

mov eax, 1 <=

mov ebx, 3

add ebx, eax

xor eax, eax

Assembly (x86) - Basic Instructions

mov eax, 1

mov ebx, 3 <= eax = 1

add ebx, eax

xor eax, eax

Assembly (x86) - Basic Instructions

mov eax, 1

mov ebx, 3

add ebx, eax <= eax = 1, ebx = 3

xor eax, eax

Assembly (x86) - Basic Instructions

mov eax, 1

mov ebx, 3

add ebx, eax

xor eax, eax <= eax = ?, ebx = ?

Assembly (x86) - Basic Instructions

mov eax, 1

mov ebx, 3

add ebx, eax

xor eax, eax <= eax = 1, ebx = 4

Assembly (x86) - Basic Instructions

mov eax, 1

mov ebx, 3

add ebx, eax

xor eax, eax

<= eax = ?

Turn and talk to the people around you.

● Write a function in C that will output assembly that
uses all of add, sub, and imul instructions

● Put that code into https://godbolt.org/ and see if it
outputs what you think

● Did it work? Discuss why or why not.

https://godbolt.org/

Assembly (x86) - Stack

● Stack: The location where a program stores memory
● To make space on the stack we subtract

Instruction
Name

p1 p2 Description

push register Add new value to the “top” of the stack

pop register Pop the “top” of the stack and put the value in
the register

Assembly (x86) - Stack

push eax sub esp, 4

mov DWORD [esp], eax

pop eax mov eax, DWORD [esp]

add esp, 4

Assembly (x86) - Stack

0x00000000

0xFFFFFFFF

ebp

esp

Assembly (x86) - Stack

mov eax, 1 <=

push eax

pop ebx

sub eax, ebx

ebp

esp

Assembly (x86) - Stack

mov eax, 1

push eax <= eax = 1

pop ebx

sub eax, ebx

ebp

esp

Assembly (x86) - Stack

mov eax, 1

push eax

pop ebx <=

sub eax, ebx

1

ebp

esp

Assembly (x86) - Stack

mov eax, 1

push eax

pop ebx

sub eax, ebx <= ebx = 1

ebp

esp

Assembly (x86) - Stack

mov eax, 1

push eax

pop ebx

sub eax, ebx

<= eax = 0

ebp

esp

Assembly (x86) - Control Flow

● Instructions can also be used to control the flow of the program
● Label: A section of assembly code with an identifier so we can keep track of it

Instruction
Name

p1 p2 Description

jmp/jle/jge label Goes to and begins executing code from wherever the
label is either unconditionally or a condition

cmp register register
OR
value

Compares two registers or a registers and a value,
usually following by a jump conditional which uses the
output of this instruction

Turn and talk to the people around you.

● Think of a simple program in C that will use control
flow with labels

● Put that code into https://godbolt.org/ and see if it
outputs what you think

● Did it work? Discuss why or why not.

https://godbolt.org/

Assembly (x86-64) - Calling Convention

Standard calling convention when calling a function
in C, on Linux:

- rax: used as return value
- rdi: first parameter
- rsi: second parameter
- rdx: third parameter

int sum(int a, int b) {

 return a+b;

}

sum:

 mov rdx, rdi

 mov rax, rsi

 add rax, rdx

 ret
https://syscalls.mebeim.net/

https://syscalls.mebeim.net/

How does a program output to terminal?

In general, libc functions from
stdio.h such as:

- printf, puts, putchar

However, we can also use:

- write (syscall)

Writing to where?

Standard output: file
descriptor 1

Dive into our Challenge

Download from training platform, rev-basic, rev-stack

Use ssh hacker@34.75.164.48 if you do not have Linux VM

Password is “revf2024”

Use gdb <filename> to launch gdb debugger

Then type break main to stop at the main function

Type run <args> to start the program

How to Reverse Software: Decompiler View

Binary File (Machine Code) Assembly Code Decompiled “Source”

Tools

● Disassembler: Translate binary into assembly code
○ objdump
○ X86dbg
○ GDB
○ radare2
○ Rizin
○ …

● Decompiler: Guess assembly code in higher-level code
○ Ghidra
○ IDA
○ Binary Ninja
○ Snowman
○ RetDec

Demo: dogbolt.org

https://dogbolt.org/

Anti-reversing Measures

What’s next?

● This Friday we’ll learn more about decompilation process
and other tools

● Some challenges are hosted on the training platform for
some great practice!

https://training.umasscybersec.org

https://training.umasscybersec.org

Intro to Ghidra

Ghidra is a reverse engineering tool developed by the National Security Agency. It
is now available for free as an open-source software that is used by security
researchers.

Download Ghidra from https://ghidra-sre.org/

You may choose to use Ghidra on your host OS, however, it is
recommended to use on Linux since you can run the binary
easily

https://ghidra-sre.org/

ELF and libc

ELF stands for Executable Linkable Format

Libc, as in “standard C library” is what provides all the functions we use

Stack vs Heap

YAP ABOUT STACK

YAP ABOUT MALLOC

Digging into spire-but-ez

- Download the binary from
https://training.umasscybe
rsec.org

- Create a new project,
import the binary, open in
CodeBrowser (the dragon)

https://training.umasscybersec.org
https://training.umasscybersec.org

Navigate to the left, Symbol Tree, Functions

Look for `entry`

This is the entry point of the program, which is where it
starts executing

Mouse on fun_00401268, press l, rename to main

Go thru function for username and password: 10 mins
each

